Videography

Watch Out, Wedding Videographers, AI Is Coming for You – IEEE Spectrum

Summary

It’s an all-too-common ploy, and legitimate manufacturing companies and distributors suffer mightily as a result of it. But the danger runs much deeper than getting ripped off when you were seeking a bargain. When purchasing pharmaceuticals, for example, you’d be putting your health in jeopardy if you didn’t receive the bona fide medicine that was prescribed. Yet for much of the world,
getting duped in this way when purchasing medicine is sadly the norm. Even people in developed nations a…….

npressfetimg-673.png

It’s an all-too-common ploy, and legitimate manufacturing companies and distributors suffer mightily as a result of it. But the danger runs much deeper than getting ripped off when you were seeking a bargain. When purchasing pharmaceuticals, for example, you’d be putting your health in jeopardy if you didn’t receive the bona fide medicine that was prescribed. Yet for much of the world,
getting duped in this way when purchasing medicine is sadly the norm. Even people in developed nations are susceptible to being treated with fake or substandard medicines.

Tiny mechanical resonators produced the same way microchips are made (bottom) can serve to authenticate various goods. Being less than 1 micrometer across and transparent, these tags are essentially invisible.
University of Florida

Counterfeit electronics are also a threat, because they can reduce the reliability of safety-critical systems and can make even ordinary consumer electronics dangerous.
Cellphones and e-cigarettes, for example, have been known to blow up in the user’s face because of the counterfeit batteries inside them.

It would be no exaggeration to liken the proliferation of counterfeit goods to an infection of the global economy system—a pandemic of a different sort, one that has grown
100 fold over the past two decades, according to the International AntiCounterfeiting Coalition. So it’s no wonder that many people in industry have long been working on ways to battle this scourge.

The traditional strategy to thwart counterfeiters is to apply some sort of authentication marker to the genuine article. These efforts include the display of Universal Product Codes (UPC) and Quick Response (QR) patterns, and sometimes the inclusion of radio-frequency identification (RFID) tags. But UPC and QR codes must be apparent so that they are accessible for optical scanning. This makes them susceptible to removal, cloning, and reapplication to counterfeit products. RFID tags aren’t as easy to clone, but they typically require relatively large antennas, which makes it hard to label an item imperceptibly with them. And depending on what they are used for, they can be too costly.

We’ve come up with a different solution, one based on radio-frequency (RF) nanoelectromechanical systems (NEMS). Like RFID tags, our RF NEMS devices don’t have to be visible to be scanned. That, their tiny size, and the nature of their constituents, make these tags largely immune to physical tampering or cloning. And they cost just a few pennies each at most.

Unseen NEMS tags could become a powerful weapon in the global battle against counterfeit products, even counterfeit bills. Intrigued? Here’s a description of the physical principles on which these devices are based and a brief overview of what would be involved in their production and operation.

You can think of an RF NEMS tag as a tiny sandwich. The slices of bread are two 50-nanometer-thick conductive layers of indium tin oxide, a material …….

Source: https://spectrum.ieee.org/ai-video-editing